Course Number and Name

BEC003 - SATELLITE COMMUNICATION

Credits and Contact Hours

3 and 45

Course Coordinator's Name

Mr Sethupriyan

Text Books and References

TEXT BOOK:

1.Dennis Roddy, "Satellite Communication", 4th Edition, Mc Graw Hill International, 2006.

REFERENCES:

- 1. Wilbur L. Pritchard, Hendri G. Suyderhoud, Robert A. Nelson, "Satellite Communication Systems Engineering", Prentice Hall/Pearson, 2007.
- 2. N. Agarwal, "Design of Geosynchronous Space Craft", Prentice Hall, 1986.
- 3. Bruce R. Elbert, "The Satellite Communication Applications", Hand Book, Artech House Bostan London, 1997.
- 4. Tri T. Ha, "Digital Satellite Communication", II nd edition, 1990.
- 5. Emanuel Fthenakis, "Manual of Satellite Communications", Mc Graw Hill Book Co., 1984.
- 6. Robert G. Winch, "Telecommunication Trans Mission Systems", Mc Graw-Hill Book Co., 1983.
- 7. Brian Ackroyd, "World Satellite Communication and earth station Design", BSP professional Books, 1990.
- 8. G.B.Bleazard, "Introducing Satellite communications", NCC Publication, 1985.
- 9. www.sac.gov.in/SACSITE/Satcom_Overview.doc

Course Description

- To enable the student to become familiar with satellites and satellite services.
- Study of satellite orbits and launching.
- Study of earth segment and space segment components
- Study of satellite access by various users.

Prerequisites	Co-requisites				
Communication Engineering – I & II	Nil				

required, elective, or selected elective (as per Table 5-1)

Selected Elective

Course Outcomes (COs)

CO1: Define orbital mechanics and launch methodologies

CO2: Describe satellite subsystems

CO3: Design link power budget for satellites

CO4: Compare competitive satellite services

CO5: Explain satellite access techniques

CO6: DTH and compression standards

Student Outcomes (SOs) from Criterion 3 covered by this Course

COs/SOs	a	b	С	d	е	f	g	h	i	j	k	
CO1	Н		М		М	М	М	Н	М		L	
CO2	М	L	Н				Н		L	Н		
CO3	М	Н	М				М	М	М		Н	
CO4	М	Н	Н		М				М		М	
CO5		L			М	М	М		L		М	
CO6				М	М	Н	М					

List of Topics Covered

UNIT I INTRODUCTION

9

Introduction, Types — Active and Passive Satellite, Frequency allocation, Satellite orbits, Kepler's laws, Definitions of terms for earth-orbiting Satellites, Apogee and Perigee heights, Orbit Perturbations, Geo stationary orbit, Antenna look angles, Limits of visibility, Earth Eclipse of Satellite, Sun transit outage, launching orbits.

UNIT II THE SPACE SEGMENT

Ç

Introduction, The Power supply, Attitude control, Spinning satellite stabilization, Momentum Wheel Stabilization, Station keeping, Thrmal control, TT&C subsustem, Transponders, The Wide Band receiver, The Input Demultiplexer, The Power Amplifier, The Antenna subsystem.

UNIT III THE EARTH SEGMENT AND ANTENNAS

9

Transmit receive earth station subsystems, up-converters-High Power Amplifier-Receive chain-LNA&LNB.TVRO earth station, The isotropic radiator and antenna gain, Horn antenna, The Parabolic reflector, Double reflector antenna-Cassie grain antenna-Gregorian antenna.

UNIT IV THE SPACE LINK & SATELLITE ACCESS

9

EIRP, Transmission losses The Link budget equation, System noise, Effects of rain, up link and down link C/N ratio. Multiple access techniques-Concepts and types of TDMA, FDMA and CDMA-Comparison and contrast of TDMA, FDMA CDMA.

UNIT V SATELLITE APPPLICATIONS

9

Satellite Mobile services, DBS, VSAT, Remote sensing, GPS, INTELSAT, INMARSAT, SARSAT, Video Conferencing and Internet connectivity